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Abstract— Mobile robot reliability must be guaranteed before
they can be employed in hazardous domains like mine clearing or
nuclear waste handling, but recent studies of robots used in urban
search and rescue and military scenarios have shown a mean time
between failures (MTBF) in the field of 6 to 20 hours. This paper
extends previous work characterizing robot failures by including
recent data and organizing failures according to a novel taxonomy
which includes human failures. Failure type and frequency data
were collected from 15 robots representing three manufacturers
and seven models over a period of three years, in a variety
of environments. Standard manufacturing measures for product
reliability were used. The results show that overall MTBF and
availability have improved since the previous analysis but are still
low. The MTBF across all robot types was 24 hours and availability
was 54%. The control system was the most common source of
failures (32%), followed by the mechanical platform. Statistical
analysis shows that the time between failures, time to repair, and
downtime vary widely. For this reason the means reported here
are not reliable predictors for future failures, but still provide
information on the overall frequency and consequences of mobile
robot failures.

I. INTRODUCTION

Great benefit could be derived from robots used to re-
place living beings in hazardous tasks and environments (e.g.
surveying an area for chemical or biological hazards, bomb
disposal, or nuclear waste cleanup). However, before robots
can be employed in such dangerous domains, a certain level of
reliability must be guaranteed. Recent studies of mobile robot
performance in urban search and rescue (USAR) and military
operations in urban terrain (MOUT) have shown a significant
lack of reliability, with a MTBF in the field of between 6 [2]
and 20 hours [18].

Information on how and when mobile robots fail helps to
identify the weaknesses of current mobile robot technology,
which in turn, illuminates the challenges which robot manu-
facturers and developers of fault-tolerant control systems must
meet to improve robot reliability. Data on how mobile robots
fail can also be used to provide a realistic starting point for fault
modeling in model-based fault tolerance systems, such as [9]
and [20]. In addition, potential users of mobile robot technology
can benefit from an unbiased, quantitative assessment of current
technology. This can aid them in balancing the capabilities a
mobile robot will bring to their application domain, against the
actual cost of maintaining the equipment.

The extensive use of mobile robots over the past three
years at the University of South Florida (USF) has produced
a reasonable database of mobile robot failures and their char-

acteristics. The Center for Robot-Assisted Search and Rescue
(CRASAR) currently has twenty-one robots from six manufac-
turers. CRASAR spends more than 200 hours per year using
the robots in the field.

This paper examines the user logs and collected failure
type and frequency data of the most heavily used robots
at CRASAR. The failures were categorized using a newly
developed taxonomy of robot failures described in Sec. III.
Standard manufacturing measures for the reliability of a product
were also used to examine the data (Sec. IV) in terms of the
mean time between failures, availability, and average downtime.
These results were further examined using basic statistical
analysis methods. Sec. V presents the frequency and impact
of failures, indoor research versus field robot reliability, and
the relative frequency of failures in common robot subsystems.
Human-robot interaction failures, and the repairability of the
failures are also included. The expected probability of failure
associated with each leaf in the taxonomy tree is provided. In
Sec. VI the paper concludes that the MTBF has improved but
overall reliability is still low. Additionally, the MTBF in field
robots is far lower than in research robots.

II. RELATED WORK

Previous work by CRASAR includes a detailed analysis on
the failures encountered while using robots in the World Trade
Center (WTC) rescue operation [10]. In 2002, this work was
expanded by adding an analysis on failures encountered during
the day to day use of robots by CRASAR [2]. The findings
showed an overall MTBF of 8 hours (6 for field robots) and
an availability of less than 50% (64% for field robots). The
effectors were the most common sources of failures (42%)
for field robots. Overall, the control system was the second
most frequent source of failures at 29%. This paper extends
the 2002 study with the addition of a complete taxonomy of
mobile robot failures, inclusion of an additional year’s worth of
logs, statistical analysis of the results, and a brief examination
of human-robot interaction failures.

The results from eight studies conducted by Test and Eval-
uation Coordination Ofiice (TECO — part of the Maneuver
Support Center at Fort Leonard Wood) have been posted to the
Department of Defense Joint Robotics Program[15]. The overall
goal of these studies was to evaluate the feasibility of using the
robotic platform for its assigned tasks in the Future Combat
System (FCS). The studies were performed on a wide variety of
platforms including small mobile platforms, several bulldozers,



and a modified M1 tank. TECO has reported a MTBF of less
than 20 hours, similar to the 24 hours reported here.

In addition to the 10 studies listed above, a workshop on
robots used in museums produced two studies on the reliability
of mobile robots actively used for long periods of time. Both
studies were focused on presenting their respective platforms
and briefly mentioned the MTBF in order to help categorize
the performance of those systems. Nourbakhsh [14] describes
a set of four autonomous robots used for a period of five years
as full-time museum docents. Their robots reached a MTBF of
between 72 to 216 hours. In [19] Tomatis et al. described a
robot used for a shorter period of time, and reported a MTBF
of 7 hours.

Other efforts have concentrated on identifying the weak-
nesses of robots in field applications but have not provided
quantitative failure data. In [1] Blitch provides a survey of
mobility problems. Casper, Micire, and Murphy [4] present
a discussion of the constraints which the USAR application
domain places on robotic technology. In [12] Murphy, Casper,
Hyams, Micire, and Minten peruse the same issues as Casper
et al. [4] but provide some additional discussion on the need
for adjustable autonomy.

III. TAXONOMY OF FAILURES

For the purposes of this paper, a failure is defined as the
inability of a robot or equipment used with a robot to function
normally. Both complete breakdowns and noticeable degrada-
tions in performance are included. In order to gain insight into
how and why mobile robots fail, a taxonomy was developed
and is illustrated in Fig. 1. This taxonomy draws from the
robotics[2], human-computer interaction[13], and dependability
computing[7] communities.

Failures are categorized based on the source of failure and are
divided into physical and human categories, following depend-
ability computing practices. Physical failures are subdivided
into classes based on common systems found in all robot
platforms. These are effector, sensor, control system, power,
and communications. Effectors are defined as any components
that perform actuation and any connections related to those
components. This category includes, for example, motors, grip-
pers, treads, and wheels. The control system category includes
on-board computer, manufacturer provided software, and any
remote operator control units (OCU’s).

Human failures (also called human error) are subdivided
into design and interaction subclasses. The interaction subclass
represents the failures of interest to the human computer inter-
action (HCI) and human-robot interaction (HRI) communities.
Following HCI practice, it is further refined into mistakes and
slips. Mistakes are caused by fallacies in conscious processing,
such as misunderstanding the situation and doing the wrong
thing. Slips are caused by fallacies in unconscious processing,
where the operator attempted to do the right thing but was
unsuccessful.

Each failure, regardless of physical or human, has two
attributes, repairability and impact. The severity of the failure
is evaluated based on its impact on the robot’s assigned task

or mission. A terminal robot failure is one that terminates the
robot’s current mission, and a non-terminal failure is one that
introduces some noticeable degradation of the robot’s ability to
perform its mission. The repairability of the failure is described
as either field-repairable or non-field-repairable. A failure is
considered field-repairable if it can be repaired under favorable
environmental conditions with the equipment that commonly
accompanies the robot into the field. For example, if a small
robot which is transported in a single backpack encounters a
failure, the tools required for the repair would have to fit in
the backpack along with the robot and its support equipment
in order for the failure to be classified as field-repairable.

IV. METHODS

This section describes the equipment used, the methodology
for data collection, types of data collected, and the calculations
used to generate the results presented in Sec. V.

A. Robots

Of the twenty-four mobile robots used at USF over the
past three years, fifteen were considered in this analysis.
These robots represent seven different models made by three
manufacturers. Thirteen of the robots serve in field domains.
Field robots are expected to work outdoors, though generally
not in rain or snow. They are intended to be able to handle
rougher terrains, tolerate dirt and dust, even multi-story falls.
The two indoor robots are the more traditional research robots,
with small, narrow wheels suitable for operating on smooth flat
surfaces.

To maintain focus on how and how often robots fail rather
than which robots fail, the paper labels the three manufacturers
by X, Y, and Z, and the models are labeled with A. . . G. Table
I includes the label for the robot’s manufacturer and model as
well as how many robots of each model were examined, the
robot’s size, communication method(s), whether it is a tracked
or wheeled vehicle, and the general application for which it
was designed. The size of a robot is either man-packable or
man-portable[10]. A man-packable robot can be safely carried
by one person. A man-portable robot is larger than a man-
packable robot, but can still be transported in an automobile
and can be lifted in and out by one or more persons.

Robot models A and B were designed for chemical and
nuclear inspection, though they were used for urban search
and rescue (USAR) and military operations in urban terrain
(MOUT). Models C and D were specifically designed for
MOUT, while E and F were designed for general outdoor
research. Model G was intended for indoor research.

Field X A and B model robots are the smallest robots
examined and are no larger then 15.5 by 30.5 cm, see Fig. 2.
Both are tracked vehicles and do not have onboard computers.
Both have a microphone, speaker, a motor-driven manual-focus
CCD camera, and a camera tilt unit with halogen lighting.
Model B robots also have the ability to adjust the shape of
their chassis. This allows them to raise or lower the camera tilt
unit and change the track profile.



Fig. 1. The taxonomy of mobile robot failures used in this analysis. Classes are shown with solid lines, and attributes with dashed lines.

TABLE I
THE ROBOTS AND SOME OF THEIR CHARACTERISTICS.

Model Size Manufacturer # Comm. Drive Purpose
A man-packable Field X 1 Tether Track inspection
B man-packable Field X 3 Tether Track inspection
C man-packable Field Y 3 Wireless Track MOUT
D man-packable Field Y 4 Both Track MOUT
E man-portable Field Y 1 Both Wheel outdoor research
F man-portable Field Y 1 Both Wheel outdoor research
G man-portable Indoor Z 2 Wireless Wheel indoor research
Summary 15

Fig. 2. Field X man-packable inspection robot in a confined space.

Field Y’s C model was a precursor of the D model robots.
Both are about the size of a large backpack, see Fig. 3. They
are tracked vehicles with onboard computers and carry multiple
cameras and lighting. The Model C robots also have a set
of 13 sonar range sensors. Both were developed for MOUT
operations though the Model C is not durable enough for such
operations [17].

E and F models manufactured by Field Y are larger, wheeled
robots with differential steering. Model E has a footprint of 78
by 62 cm compared to 104 by 81 cm for Model F. Both carry
onboard computers and multiple cameras. The E model robots
are small enough to be used for both indoor or outdoor research
projects. The larger, Model F, robots are less maneuverable, but
have a longer battery life and can carry smaller robots such as
the Models C and D [11].

Model G robots, shown in Fig. 4, are cylindrical in shape,
with a 53 cm diameter. Both are wheeled robots with syn-
chronous, non-holonomic drive systems. These robots have two

Fig. 3. A man-portable general purpose field robot (top), and a MOUT field
robot exploring a rubble pile (bottom), both from manufacturer Field Y.

onboard computers with a sensor suite which can include tactile,
ultrasonic, and basic vision systems.

Another important factor to consider when comparing robot
models is their maturity. The Field X robots are the most
mature; over ten years of experience with similar platforms
proceeded the design of these robots. The G model was devel-
oped in 1996. Both E and F models have been in production
for about six years. The C model robots were first developed in



Fig. 4. An Indoor Z research robot.

1999 and went through several major modifications during the
next two years. The D model is the newest, it was introduced
in 2001.

B. Data Collection

User and failure logs served as the sources of data for this
analysis. A total of 171 failures were recorded over a three year
period between June 21, 2000 and January 10, 2003. Prior to
February 2002, informal records were kept including changes
to the robots and information about ongoing repairs. Starting
in February 2002 formal failure and user logs were kept. The
user logs were entered by robot operators and the failure logs
were recorded by the repairer. Since then over 2100 hours of
usage have been logged, including 500 hours of field work. The
following information was gathered for quantitative analysis:

• which robot was involved
• who repaired it
• the date the failure was discovered
• the date the failure was fixed
• the total repair time
• which component failed
• where the failure occurred
• where the repair was performed

C. Calculations

All the formulas used for reliability analysis of the data were
taken from the IEEE standards presented in [16]. The mean
time between failures (MTBF) is calculated by equation (1).
This metric provides a rough estimate of how long one can
expect to use a robot without encountering failures. Another
metric used in this analysis is the failure rate, which is simply
the inverse of MTBF. Availability is calculated using (3), where
the mean time to repair, MTTR is defined as in (2).

MTBF =
∑n

i=2 Hours Usage Between Fi and Fi−1

# Failures
(1)

MTTR =
# Hours Spent Repairing

# Repairs
(2)

Availability =
MTBF

MTBF + MTTR
· 100% (3)

The usage logs do not cover the entire three year time-
frame in which the failures occurred. In an attempt to remedy
this discrepancy, logs were added for every failure which did
not already have a corresponding entry in the usage logs. The
estimated usage hours for the added logs were calculated based
on the average duration of recorded usage logs for that type of
robot.

Other values included in this analysis were calculated using
standard formulas. For example, the probability that an arbitrary
failure was caused by a component of class C (e.g. sensor,
effector, mistake) is simply (4).

P (c|failure) =
# Failures Caused by c

Total # Failures
| c ε C (4)

The statistical analysis of the results consisted of calculat-
ing the confidence intervals for the mean-based results and
the probability-based results. The mean-based results (MTBF,
MTTR, and Average Downtime) were analyzed using the
standard equation (5) for the 95% confidence interval, where
m represents the sample mean. Confidence intervals for the
component failure probabilities were similarly calculated using
equation (6), where s represents the sample probability. Due to
the inclusion of estimated usage times, it should be noted that
the 95% confidence intervals for MTBF are approximations.

m − 1.96

√∑
x − m

n
≤ µ ≤ m + 1.96

√∑
x − m

n
(5)

s − 1.96

√
s(1 − s)

n
≤ µ ≤ s + 1.96

√
s(1 − s)

n
(6)

V. RESULTS

This section examines the physical and human failures
recorded to date. It is organized to coarsely follow the taxonomy
presented in Sec. III. Physical failures are examined first,
followed by human failures, and then the repairability of mobile
robot failures is considered. The last subsection is limited to the
repairability of the physical failures, since repair information
was not documented for the human failures.

A. Physical Failures

Physical failures are considered in terms of their frequency,
the probability that the cause was a particular type of compo-
nent, and their repercussions (or impact) measured by availabil-
ity and downtime.

1) Failure Frequency: Table II shows failure frequencies
for the different manufacturers. The total number of failures
recorded, the overall frequency of failures (in failures per hour),
and the mean time between failures (MTBF), in hours are
included. Overall statistics provided at the bottom of the table.

The statistical analysis showed that the MTBF (active usage
time, not idle time) data had a high variance, resulting in
extremely wide confidence intervals for the mean. For example,



TABLE II
OVERALL FREQUENCY AND MTBF BROKEN DOWN BY MANUFACTURER.

ABOVE ARE THE RESULTS OF THE 2002 ANALYSIS, AND BELOW THE 2003
ANALYSIS.

Manu. # Failures Failures/hr MTBF(hrs)
Field X 37 0.17 6.03
Field Y 44 0.16 6.13
Indoor Z 16 0.05 19.50
Overall 97 0.12 8.29
Field X 58 0.12 8.74
Field Y 89 0.06 15.77
Indoor Z 25 0.01 91.81
Overall 172 0.04 23.99

Fig. 5. Probability that a failure was caused by a component type.

statistical variance of the means in Table II lie between 294 and
8,465 hours. The result of this variance is that the MTBF’s are
not very reliable predictors for the time that the next failure
will occur, given the time of the last failure. It also means that
the differences in MTBF between the manufacturers are not
statistically significant. They do still provide a good summary
of the information found in the logs and a general assessment
of failure frequency.

Comparing these results with those found in the 2002 anal-
ysis shown in Table II shows that the overall MTBF has
improved by almost a factor of three. Each manufacturer’s
MTBF also gained ground, with Indoor Z showing by far the
most improvement. Based on the results presented in Sec. V-
A.4, it is unlikely that this resulted from an actual improvement
in the reliability of the robots. Instead, an additional year’s
worth of usage logs and the discovery of archived information
on when the Indoor Z robots were used prior to logging,
provided better records (and subsequently estimates) of actual
usage time.

2) Component: Figure 5 was generated using the component
categories defined in Sec. III. As in the previous table the fail-
ures are grouped by manufacturer with the overall probabilities
for each category shown at the right-hand side of the figure. The
sample probabilities are shown as bars with 95% confidence
intervals indicated.

The most common source of failures is the control system. In

TABLE III
COMPARISON OF THE PERFORMANCE OF RESEARCH AND FIELD ROBOTS.

ONLY FAILURES IN THE TARGET ENVIRONMENT ARE INCLUDED. THE

UPPER TABLE SHOWS THE RESULTS OF THE 2002 ANALYSIS, AND BELOW

THE 2003 ANALYSIS.

Manufacturer Type % of Usage Failures/hr MTBF(hrs)
Field X Field 94% 0.16 6.14
Field Y Field 28% 0.16 6.27
Indoor Z Research 100% 0.05 19.50
Field X Field 80% 0.10 10.27
Field Y Field 24% 0.21 4.57
Indoor Z Research 94% 0.01 149.08

most of these cases the robot was unresponsive and the solution
was to cycle the power; the source of these problems remains
unknown. Other examples of control system failure include
a corrupted hard drive on a Model C, a timing delay which
hung the boot process on the same Model C, and electrical
problems in Model B’s OCU. In 2002, effector failures were the
most common followed by the control system. The difference
between effector and control system relative frequencies is
significant only if a 50% or more confidence interval is used.
Both are significantly more common than the other categories.

Tracked vehicles continue to be more susceptible to effector
failures then their wheeled counterparts. This is reflected in the
fact that Field X is the only manufacturer for which effector
failures is the most common. All of the robots examined in this
study from Field X are tracked vehicles. Overall, thrown tracks
are the most common form of effector failure. Other examples
of effector failures are Model B’s pinion gear becoming stripped
or the same gear’s pin breaking, and the failure of a motor-
amplifier on the Model E.

The communications failure category has become more com-
mon due to increased use of wireless robots over the past year.
The predominant failure is communication loss. According to
the data, the least common sources of failures for these robots
are sensing and power failures. This is due in part to the fact that
the manufacturers purchase mass-produced sensors. Conversely,
the robot’s effectors, control, and power systems are custom
built. The most common failed sensor is the camera. It is also
the only sensor which appears in every robot’s sensor suite.
Power may be more reliable than the other systems due to its
simplicity (compared to the other subsystems), maturity, and
the fact that it is the least affected by environmental hazards.

3) Indoor research versus field robots: In order to compare
indoor research and field robots it is important to consider only
failures which occurred in the environment for which each
robot was designed. To accommodate this, only in-lab usage
and failures were considered for indoor research robots, while
only usage and failures in the field were considered for field
robots. The percentage of usage in the target environment over
all the recorded usage is included. The performance in terms of
failure metrics is captured in the overall frequency of failures
and the mean time between failures (MTBF).

In comparison to 2002, the gulf between field and indoor
research robots has increased dramatically. Again, this appears



TABLE IV
AVERAGE DOWN TIME AND AVAILABILITY. ABOVE ARE THE RESULTS OF

THE 2002 ANALYSIS, AND BELOW THE 2003 ANALYSIS.

Manu. Availability Average Downtime(hrs)
Field X 84% 195
Field Y 24% 353
Indoor Z 94% 61
Overall 47% 243
Field X 17% 49.6
Field Y 57% 12.1
Indoor Z 99% 0.3
Overall 54% 23.2

to be due to the innovative capabilities of field robots, and the
inherent difficulty in constructing robots which can operate in
unstructured, outdoor environments. Robots manufactured by
Field Y in particular have a much lower MTBF in the field
compared to their combined field and lab MTBF (almost 16
hours). One likely reason for this is that field environments
are more challenging. Another reason is increased use over the
past year of the larger (Models E and F), more reliable (68 and
12 hours MTBF resp.), platforms for research work in the lab.
In 2003 these platforms had a greater influence on the overall
results. Models C and D, which fail more frequently (0.6 and
2.5 hour MTBF resp.), are the primary contributors to Field Y’s
target-environment results. These models are typically used in
the field due to their mobility and size.

4) Impact: Table IV shows the collective influence of these
failures as measured by availability and average downtime. The
projected availability of the robot is included as a percentage.
This metric, also called reliability, is the probability that the
robot will be free of failures at a particular point in time. The
average downtime, or the average amount of time between the
occurrence of the failure and the completion of the repair, is
also included. Failures are again grouped by manufacturer and
then summarized at the bottom of the table.

As with MTBF (see Sec. V-A.1) the downtime and time to
repair (used to calculate availability) varied widely, and their
means are also not reliable predictors for future failures. Due to
a large MTBF and small MTTR, Indoor Z’s availability is above
99%, almost double that of either of the field groups. This is
likely due to the fact that these robots are used exclusively
indoors and rarely venture out of the safely controlled lab
environment.

In comparison with the 2002 results (also shown in Table IV)
average downtime in 2003 was considerably lower. The overall
average downtime has improved by a factor of ten. For all
but Field X, this has resulted in an increase in availability.
Since the majority of robots analyzed in 2002 were also used
in the 2003 analysis, it is again unlikely that the reliability
of the robots themselves have improved. Changes in operator
and technician behavior are a more likely cause. By learning
each robot’s common failures, downtime can be reduced as
commonly failed parts can be ordered in advance and more
reliable robots can be used in place of more fragile platforms.
From a more global point of view, the human-robot system has

become more reliable over time.

B. Human Failures

The failure logging procedure used for the past year and a
half records only physical failures, but other studies performed
in previous work covered both physical and human failures.
Two field events, a set of field experiments with Hillsbourgh
County Fire Rescue[5] and the WTC rescue response[3],[10],
were analyzed in previous work by CRASAR. Those studies
recorded the number and type of failures encountered as well
as the duration of the tasks performed. In each study a mixture
of human and physical failures were documented.

Table V isolates the human failures and categorizes them
based on the taxonomy presented in Sec. III. The field event and
the operator’s assigned task are included followed by the total
duration of that task, total number of failures, MTBF in hours,
percentage of mistakes, and percentage of slips. The results
are broken down by event with overall values provided at the
bottom.

In studying these results it is important to keep in mind
that the data set, time frame, and range of environments are
very limited. The studies did not document the time of each
failure, therefore the MTBF was calculated as the total usage
time divided by the total number of failures, instead of the
equation specified in Sec. IV-C. It is also important to note
that in the WTC studies, for some forms of human failures,
the duration was recorded rather then the number of individual
failures. For the purposes of this analysis, each duration value
recorded was considered to be a single failure. Therefore the
number of failures used in this analysis represents the minimum
that actually occurred.

Table V shows that human failures occurred more often
during the actual USAR response than in the field experiments.
Considering the difficulty of navigating a collapse site as large
and compact as the WTC disaster, compounded by fatigue
and the risk to personal safety, this result is expected. On the
other hand, the ratio of mistakes to slips is similar despite
these differences. More data is needed to determine if this is a
universal attribute of human-robot interaction.

C. Repairability

Table VI compares the rates of physical failures that were
field-repaired and those that were not. For each the percentage
of failures and average downtime are included. It should be
noted that these results are based on field repaired failures rather
then field-repairable failures as defined in Sec. III. In theory,
field-repaired failures are a subset of the field-repairable set, as
some failures which could have been repaired in the field may
not have been. The failures are grouped by manufacturer and
summarized at the bottom of the table.

As expected, the average downtime for field repaired failures
is very low compared to those that were not field repaired, with
the exception of Indoor Z for whom all repairs were performed
in the lab. Based on Table VI, not-field-repaired failures occur
more frequently. This is probably the main reason for the overall
54% availability. A good example of the effect of repairability



TABLE V
HUMAN FAILURE ANALYSIS RESULTS.

Field Event Task Duration # Failures MTBF(hrs) % Mistakes % Slips
Field Experiments[5] Climb Stairs 24 min 3 0.13 33% 67%
WTC[3][10] Search Small Voids 55 min 15+ 0.06 40% 60%
Overall 79 min 18 0.28 39% 61%

TABLE VI
FREQUENCY AND IMPACT OF REPAIRABILITY.

Manu. Field Repaired Not Field Repaired
% Ave.Downtime(hrs) % Ave.Downtime(hrs)

Field X 52% 0.18 47% 92.2
Field Y 36% 0.34 62% 19.9
Indoor Z 0% N/A 100% 0.3
Overall 35% 0.28 65% 37.3

is the difference in availability of Field X robots over the past
year. The analysis performed in 2002 showed that 70% of
their failures were field repairable and their availability was
84%. In 2003 analysis, only half were field repairable and the
availability dropped to 17%. The failures which contributed to
this decline were typically severe and very difficult to diagnose.
These factors are likely to have reduced the positive impact
that experienced operators and technicians had on the average
downtime for other common failures. Field Y’s improvement
over the 2002 results is also due to a difference in the relative
frequency of field repaired failures (up by 22%).

D. Composite

Fig. 6 provides a summary of the findings in terms of the
taxonomy presented in Sec. III. The probability that a failure is
of a given class is displayed beneath each class leaf (node) in
the taxonomy tree. The ranges of the confidence intervals for the
component categories are not included because they are difficult
to interpret in this form. Instead, only the sample probability
used to generate those intervals is presented. The probability of
a failure being caused by the control system or the effectors or
is near two thirds. Communications failures are less frequent
with 16% of the failures, followed by sensing and power at
12%. Of the human failures, slips are more common with 61%
of documented failures and mistakes comprise 39%. Since the
physical and human failure results came from different sources,
the relative frequency of physical versus human failures cannot
be determined from this analysis.

The field-repairable attribute is similarly marked with the
probability that a given failure will have one or the other
attribute value. Not-field-repaired failures are more common
than field-repaired failures, with 65% of the failures covered
in this analysis. Note that this categorization is not equivalent
to field-repairable and non-field-repairable failures as defined
in the taxonomy (see Sec.III). Procedures for using the robots
in the field are currently under development and have not
been completed to a point where this categorization is can be
consistently applied. For now, which failures were and were not
repaired in the field provides a deterministic estimator for this
attribute. Design failures (under human failures) and the ter-

minal versus non-terminal attribute have not been consistently
recorded and are therefore excluded from this figure.

VI. CONCLUSIONS

Over the past year an additional 1082 hours of robot usage
(241 of those in the field) and 75 failures have been recorded.
The additional data have shown that the MTBF is three times
better than the average found during the 2002 analysis[2].
Maturity still appears to have an influence on a platform’s
overall reliability. For example, Model D built by Field Y shows
much better reliability (availability near 90%) than its prototype
Model C (below 40%). On the other hand, changes made
to the mature Field X platforms, that seemed so dependable
a year ago, have had a significant effect on their reliability.
The additional data also show that the gulf between field and
research robots is wider than expected. Field robots fail more
often by a factor of 10, probably due to the demands of
field environments. The improvements in MTBF and average
downtime are likely due to the additional logs (providing a
better estimate of robot failure characteristics) and to improved
operator and technician behavior. By identifying each robot’s
common failures, downtime was reduced. Commonly failed
parts could be ordered in advance and more reliable robots were
used in place of fragile platforms. Reliability is still low, with
an overall availability of 54%. The current complexity level
of the systems and difficulty in maintaining quality control for
these low volume products are suspected to be the underlying
causes of the observed low overall availability.

Physical failures occurred, on average, once every 24 hours
and human failures occurred once every 17 minutes of robot
usage time. Statistical analysis shows that the time between
failures, the time to repair, and the downtime vary widely.
Therefore none of the differences between related means can
be considered to be reliable predictors for occurrence intervals
between future failures. The control system was the most
common source of failures (32%) with effectors as the second
most common at 27%. Based on the statistical analysis either
could be more common, and both occur more often then the
other categories of failures.

More work is needed to understand human failures. This
analysis examined under 20 failures. Only the frequency, MTBF
of 17 minutes, and type of failure (61% were slips and 39%
were mistakes) could be determined from the information
gathered. Reliable data collection methods, like those in place
for physical failures, need to be developed and implemented.
Design failures, in particular appear to be not well studied (at
least in quantitative form) in the literature.

The results of the statistical analysis present additional op-
portunities for future work. Isolating the factors responsible for



Fig. 6. Summary of classification results using the failure taxonomy from Sec. III including probabilities for each leaf class and attribute value.

the large variance in time between failures will lead to a deeper
understanding of the conditions in which robots fail. A similar
analysis for repair time may lead to an objective, quantitative
measure of the severity and (with downtime) impact of a given
failure.

Though this analysis relies on manual logging, it has still
expanded knowledge on how mobile robots fail, a topic which
is noticeably lacking in the robotics literature. The informa-
tion presented here can be used as estimations and general
assessments in a variety of applications. Diagnosis methods
which use probing (gathering additional information through
sensors or near-by robots) to isolate failures, as in [8] and [6],
can use probabilities to rank hypotheses for testing, thereby
reducing overhead by testing the most likely hypotheses first.
Researchers and program managers who already work with mo-
bile robots, as well as potential adopters of robotics technology,
can anticipate needing two robots for every one intended for
use, based on the 54% availability rate. The results also suggest
that more mature robot systems should be tested for suitability
for a new application before complex experimental platforms.
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